A Multidirectional Occlusion Shading Model for Direct Volume Rendering
نویسندگان
چکیده
In this paper, we present a novel technique which simulates directional light scattering for more realistic interactive visualization of volume data. Our method extends the recent directional occlusion shading model by enabling light source positioning with practically no performance penalty. Light transport is approximated using a tilted cone-shaped function which leaves elliptic footprints in the opacity buffer during slice-based volume rendering. We perform an incremental blurring operation on the opacity buffer for each slice in front-to-back order. This buffer is then used to define the degree of occlusion for the subsequent slice. Our method is capable of generating high-quality soft shadowing effects, allows interactive modification of all illumination and rendering parameters, and requires no pre-computation.
منابع مشابه
A Comparison of Volumetric Illumination Methods by Considering their Underlying Mathematical Models
In this paper, we study and analyze seven state-of-the-art volumetric illumination methods, in order to determine their differences with respect to the underlying theoretical mathematical models and numerical problems potentially arising during implementation. The chosen models are half angle slicing, directional occlusion shading, multidirectional occlusion shading, shadow volume propagation, ...
متن کاملA Directional Occlusion Shading Model for Interactive Direct Volume Rendering
Volumetric rendering is widely used to examine 3D scalar fields from scanners and direct numerical simulation datasets. One key aspect of volumetric rendering is the ability to provide shading cues to aid in understanding structure contained in the datasets. While shading models that reproduce natural lighting conditions have been shown to better convey depth information and spatial relationshi...
متن کاملProduction-Ready GPU-Based Monte-Carlo Volume Rendering
This paper presents a practical, high-quality, hardware-accelerated volume rendering approach including scattering, environment mapping, and ambient occlusion. The motivation for this technique is the increasing demand among visual artists who create computer animations for information and educational purposes. In the paper we examine the application of stochastic raytracing techniques for volu...
متن کاملVolume Rendering using the Fourier Projection-Slice Theorem
The Fourier projection-slice theorem states that the inverse transform of a slice extracted from the frequency domain representation of a volume yields a projection of the volume in a direction perpendicular to the slice. This theorem allows the generation of attenuation-only renderings of volume data in O (N 2 log N) time for a volume of size N . In this paper, we show how more realistic rende...
متن کاملRendering using the Fourier Projection - Slice Theorem
The Fourier projection-slice theorem states that the inverse transform of a slice extracted from the frequency domain representation of a volume yields a projection of the volume in a direction perpendicular to the slice. This theorem allows the generation of attenuation-only renderings of volume data in 0 (N2 log N) time for a volume of size N 3 • In this paper, we show how more realistic rend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 29 شماره
صفحات -
تاریخ انتشار 2010